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A Theoretical Analysis of Transient

a -]
Anay R Sound Radiation From a Clamped
nTounage | CiFCUlAr Plate
A theoretical analysis of transient sound radiation from a clamped circular plate is
M. Latcha given using a pressure impulse response method. The vibration response of the plate

to a transient point force is obtained. The modal pressure impulse response func-
tions for the plate are derived from the Rayleigh surface integral and numerically
convoluted with the modal acceleration response of the plate. The impulse response
Sfunctions are closely related to the mode shapes and the geometry of the problem.
They relate the spatial domain to the temporal domain of the pressure waves. The
pressure impulse response waveforms are given for a number of plate modes and the
changes in the waveforms with distance from the plate are shown. Sound radiation
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due to forced and free vibrations of the plate are discussed.

Introduction

Acoustic radiation from planar elastic structures is a
fundamental problem in acoustics. Transient radiation from
vibrating surfaces represents an important subset of this
problem in the analysis of a large number of diverse acoustics
problems. Earlier work on this subject includes radiation
from transient point-excitations of infinite plates [1-3],
transient sound transmission through finite plates [4-8], and a
large class of problems on transient radiation from a baffled
planar piston. An extensive review of the latter subject is
given in reference [9].

The specific problem of transient sound radiation from a
finite plate excited by an impact has been the subject of a
number of studies. However, most of these studies have been
experimental in nature and have resulted in empirical
relationships between various parameters [10]. A significant
analytical study was reported by Strasberg [11] on radiation
from a periodically struck diaphragm, where radiated
acoustic power was obtained in the frequency domain.

Sound radiation from a vibrating plate in an infinite baffle
can be obtained by solving the pressure wave equation with
appropriate boundary and initial conditions. A number of
mathematical techniques have been developed for the problem
of sound radiation from a baffled piston. These can be
grouped under four fundamental methods: (1) Rayleigh
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surface integral [12], (2) King integral [13], (3) Schoch
solution [14], and (4) convolution integral [15, 16]. Among
these methods only the King integral is limited to circular-
shaped pistons. The other three methods are applicable to
baffled planar pistons with arbitrary shapes.

The Rayleigh surface integral, which is a special case of the
Helmholtz-Huygens Integral, was the first of these methods
developed to treat the problem of radiation from baffled
planar pistons. The other three methods are solutions of the
wave equation; however, they can also be directly derived
from the Rayleigh surface integral by appropriate change of
coordinates. A detailed discussion of these methods and their
interrelationships can be found in reference [9].

The problem of transient radiation from baffled planar
radiators with nonuniform vibration amplitude was treated in
a number of recent studies [17-20]. Greenspan [17] considered
radiation from rigid, simply supported, clamped and
Gaussian radiators, treating both steady-state and transient
cases. Harris [18] developed a method for transient radiation
from baffled planar pistons with arbitrary vibration am-
plitude. His method is an extension of the convolution
method where a generalized spatial impulse response function
is convolved with the piston vibration-time history. Harris’s
results compared the effects of point and finite size receivers.
The problems of radiation from planar radiators with
axisymmetric vibration distribution was treated by
Stepanishen [19]. He developed a generalized Green’s func-
tion which leads to representation of the acoustic field with a
single integral. His results were further generalized for the
case of radiators with arbitrary shape and nonuniform
vibration distributions by Tjgtta and Tjdtta [20].

The present paper describes a theoretical analysis of
transient acoustic radiation from an impact-excited clamped
circular plate in an infinite baffle. The expression for the
sound pressure is obtained using the spatial impulse response-
convolution approach, where the pressure impulse response is
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Fig.1 Geometry of the problem

obtained as a line integral and convolved with the ac-
celeration-time history of the plate to obtain the transient
radiation. Several numerical results are given to illustrate the
distinct differences in the sound pressure waveforms due to
forced and free vibrations of a clamped plate in an infinite
baffle excited by an impact force. The results are found to be
the same as those obtained by direct numerical integration of
the Rayleigh surface integral reported by the authors earlier
[21].

Plate Vibrations

Radiation from a thin circular plate of radius a clamped at
the outer edge and mounted in an infinite baffle is considered.
An inviscid isotropic homogeneous fluid with a speed of
sound ¢ and a density p, much less than the density of the
plate g is in contact with the plate. Geometry of the problem is
shown in Fig. 1. The plate is assumed to be excited from rest
with a transient point force. For mathematical convenience
the Euler plate theory is used to determine the vibratory
response of a thin plate. However, as pointed out in reference
[31, for frequencies above which the wavelength in the plate is
less than eight times its thickness, the Timoshenko-Mindlin
plate theory should be used to prevent the slight error in-
troduced into the group and phase velocities.

Using classical plate theory, the equation of motion for the
transverse displacement, u, of a plate is given as:

D v *u+ Cou/dt + phd?u/or* = F(r,0,,t) )

where # is the thickness of the plate and D = ER3/12(1 — »?) is
its flexural rigidity. E is Young’s modulus, C is the damping
coefficient, and » is Poisson’s ratio. F(r,0,,?) is the applied
transverse force per unit surface area of the plate.

The general solution to equation (1) for a plate initially
undeformed and at rest can be written as:

Nomenclature

u(rs’ Gs, t) = (l/ph) E E [¢’nm (rsJ 05)/“’:”1]

n=0 m=0

-7

i
S() F"m (T)e - tmm ¢ sin w;:m (t - T)dT (2)

where w?,, = w,,, V1 —£2. £ is the damping ratio and w,,, are
the natural frequencies of the plate, with the subscripts » and
m denoting the radial and circular modes, respectively. ¢,,,
are the normal modes of the plate and are normalized using
their orthogonality property as:

27 pa
[ 9un 808,00y, = maers )

where

7 { Iln=p,m=q
nm 0n¢p,m¢q
The modal coefficients of the force F,,, () are found as

2 pa
Fun®= |7 . F00.0,06,,00,0.dr,d0 ]

0
7§ stutronarean,]

A transient point force may be expressed as
F(ry, 05,0y =Fy8(r; —ro)é(0; — 00)/(0)/ 27r &)

where f(¢) is the arbitrary time dependence of the force and &
is the Dirac delta function. When the transient force is applied
at the center of the plate, the force function takes the form
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&(r) = Dirac delta function
N\, = freqgency parameter
¢ = damping ratio
v = Poisson’s ratio for plate
p = density of plate material
po = density of acoustic medium
¢, = eigenfunctions of plate nth mode
w, = natural frequency of a clamped circular plate
wg = a/duration of transient force
wy = w,V1—§?
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F(rs)t):Foa(rs)f(t)/zﬂ-rs (6)
and the axisymmetric response of the plate is written as

I !
u(rs,t)= IE ,g (—ﬁi’% SO_F"(T) sin wi(f— 1) dr 7)

where

27 pa 27 pa
F0=] " Fewoseonanan | 7] sieordras, ®

The mode shapes ¢, and the natural frequencies w, are
determined by applying the boundary conditions to the
homogeneous undamped equation of motion of the plate. For
a circular plate with a clamped edge, the axisymmetric mode
shapes and the natural frequencies are given by [22]:

1 JO()\nrs/a) 10()\11"5/0)
¢n(rs == I: - :I 9
U1 Ao S Ao ®
w, =(\,/a)*N'D/ph (10)
where N, are the roots of the frequency equation (11):
JO()\N)II(>\n)+J](>\n)10()\n)=0' (11)

Jy and J; are Bessel functions of the first kind and I, and I,
are modified Bessel functions of the first kind.

The transient force-time history is represented with a
squared half-sine pulse in equation (6) to simulate elastic
impact of a plate with a sphere [21]:

(12)

Fob(ry) sinwgt/2rg, O0<t<w/wy
F(ry,0)=
s , T wy=t

The axisymmetric displacement response in equation (7) to the
forcing function in (12) becomes:

¢, (0)¢, (rs)

0
M = (4w} — o?,)sinQ— 4w, wycosQ

@

u(rs’ t) =

VasinQuyt + Q) + X exp(— Ew, )sin{w, 1, + Q) +E,
0 ?—_ té 7|'/(.00
Xyexp(—§w,ty)sin(wyt, + ), 420 (13)
where
Q = tan " '[(w} —40?)/ 4Ewyw,],
Q, = tan~ ! {w}(E+ VasinQ)/[wycosQ + Ew, (E+ Ysin{)] )
0 = tan'[Cw}/(Ch + C Ew,)],
X, = [wycosQ/(fw,sinQ; — wicos))]
Xy = [Cy/(w;cosy — £w,sinhy)],
C, = YsinQ+ X, exp(— £w, 7/ wydsinf(w} 7/ wy) + Q] + E

C, = wycosQ+ X exp(— fw, 7/ wo){ wicos{(wi 7/
o) + )] — Ewysinl(wy; 7/ wo) + 41)
E = [(40} — w?)sinQ —4twyw,cosQ)/202,

M = pra’ht,=t—1/wy,wt=w,N1— £

Acoustic Radiation

The sound pressure radiated from a vibrating plate in a
rigid infinite baffle (z =0 plane) can be obtained by evaluating
the Rayleigh surface integral [12]. For an axisymmetric
radiator the Rayleigh integral is written as:
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p(r,z,t):(po/Zﬂ')SS ulr(,¥),t —R/cldS/R (14)

where #(r,,t) is the acceleration-time history of plate
vibrations and R is the distance from the receiver to any point
on the plate surface. The elemental surface area is dS = /ldldy
with the coordinates /,y shown in Fig. 1. Subscript s delineates
the coordinates on the plate surface.

In the Rayleigh integral the delay in the arrival of the
acoustic pressure waves emanating from points on the plate at
different distances from the receiver point is taken into ac-
count by the delay-time (#-R/c¢) in the acceleration term. The
integration is carried out over the plate surface.

The spatial impulse response or the convolution approach
can be developed directly from the Rayleigh integral in
equation (14) by first transforming the integration variables
from the surface coordinates (.0} to receiver-oriented
coordinates (R,y) and then performing one of the integrals.
Referring to Fig. 1 and considering the relationship between
the coordinates, R?> = z2 + /%2 and RdR = [dl, equation (14)
can be written as

max(’ 2¥max (8:2)
S ii[rs(R,z,¥), t — R/cldRdy (15)

R
pran= 22 |

27 JRpipJ0

where R, and R,,,, are the closest and farthest distances
from the receiver to the plate surface. 2y, is the largest
angle ¢ makes as shown in Fig. 1.

From equation (13) the axisymmetric acceleration response
of an impact-excited clamped circular plate can be written as

Gro 0= Y, ()0 (16)
n=1
where

a,0=(32) 4,0
" M/ (4w} — w?)sinQl — 4fw, wycosf

( —2w2sinQupf + Q)+ X exp( — £w, HI(E*wf — wi?)
sin{wit; + Q) —2£w, wycos(wif + Q)]
X
i 0SS 1/wy

X,exp(— £, 1))[(E? wk — w}?)sin(wit, +Qy)

- —2tw,whcos(wit + D], £ 20
¢,(r) is given in equation (9).
Substitution of equation (16) in (15) gives:

SRmax SZ\[’max (R.2)

p(r,z,0= P

27 Rmin 40

(Y 6.l Rz~ R/O) dRay a7)
n=1

After changing the order of summation and integrations, and
substituting 7= R/c, equation (17) can be written as:

o

Tmax PoC ¥max (€1:2)
pr,z,t) = ES qn(t—T)[ - S

=1 * Tmin T J0

bl Rz lecdddr (8

Equation (18) shows the sound pressure at the receiver point
to be a result of radiation at each mode, which can be written
as:
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p(r.z,t)= E (G0 pintri2, 0]
n=1

Ruin/c St SR/ 19)
where the modal impulse response function at the nth mode,
DPin, is given as:

PoC [ ¥max(R=c1.2)
Pnlrafy= == $ulro(R.2, D) p—cr 0¥ (20)
Equations (18) and (19) can be interpreted as convolution of
plate acceleration-time history with the impulse response

Substituting equations (24) in equation (20) and performing
the integration results in the following modal pressure impulse
response expressions:

1. Whenr > a:

po€ ka )
M { E Em']m ()\,,r/a)J,,, [)\,, (C‘zl‘2 —ZZ)I/Z/a]

m=0

Piulrz,)=

oo

/JO()\N)'_ E Em( - l)mlm()‘nr/a)lm[}\n(cztz __22)1/2/‘1]/[0()\”)}

m=0

function, p,,(?), at each mode. These results can be obtained sin my < <
using either the convolution integral method [9] or the im- m ! Ruin 2t S Ry (25)
pulse response approach developed using a Green’s function < .
solution [19). II. Whenr £ a
c
o Vo Qur/a)a My (€2 =22) 72 /a)/ T (M)
— Lo/ @) [N, (22 —22) 2 al /TNl 2 S et S Ry
Pin (r,Z, t) = (26(1)

same as equation (25), Ruin =¢f = Ry

1t should be noted that the modal impulse response func-
tion, p;,(f), relates the radiated acoustic pressure to the
receiver-source geometry and to the mode shapes of the
radiator. Further discussion on modal impulse response will
be given later in this paper.

Evaluation of the Modal Impulse Response

The modal impulse response function, given in equation
(20), is evaluated by first expressing the mode shape functions
¢,(rs) in terms of the receiver coordinates as ¢, (R, ). Using
the law of cosines and referring to Fig. 1:

r2=rt+R2—2z2 —2r(R* —z%)'"2 cosy @1
The values of the angle y are defined as:
I. Whenr>a:
W(R,z) =cos ' [(R? — 22 +r? —a?)/2r(R* - 2%)'7?],
Ruin St S R (22)

II. Whenr<a:

7, 2<ctS Run
V(R,2)= (23)
cos I[(R? —z*+r* —a®)/2r(R* —z%)'?],

Rmin -<‘— ct é Rmax

where R, = [22+ (¢ ~a)?’]'? and R, = [2% + (r+a)?]12,
The integration of the Bessel functions with respect to y can
be simplified by using Neumann’s addition theorem [23,24}]:

JoONrs /@y =JoON,r/ @) [N, (R2 = 22172 /4]

+2 Y, TNt/ a0 [N (R — 22172 /a]cos my

m=1

(24q)

A similar relationship can be obtained for the modified Bessel
functions as:

100\"’5/‘1)=10()\,,r/a)10[)\n(R2 *z?)l/Z/a]

+2 ) (=D)L, (\r /@), [N, (R =222 /alcos myy  (24b)

m=1
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where ¢, = lande, = 2form 2 1.

The first part of equation (26a) is similar to the result for a
membrane given in [19]. Since the clamped plate cannot have
rigid body motion, the result for a rigid piston, obtained by
substituting A\, = 0 in equation (26q), indicates zero sound
pressure.

The acoustic radiation from a clamped plate excited by a
transient force such as that given in equation (12) can be
found by substituting equations (25) and (26) in the con-
volution integral given in equation (19).

Results

The transient sound pressure radiated from a clamped plate
is obtained by evaluating the convolution for each mode and
summing the results numerically, For the numerical examples,
the case of radiation from a 0.50 m diameter steel plate of
1.59 mm thickness was used. The magnitude of the excitation
force in 134 N with the force-time history given in equation
12).

The plate acceleration response at its midpoint, the pressure
impulse response at z = 0.10 m on the axis of symmetry, and
the resulting modal sound pressure at the same location are
shown in Fig. 2 for a number of modes. The total plate ac-
celeration response and sound pressure waveforms are ob-
tained by summing the modal acceleration and sound pressure
waveforms for 50 modes, as shown in Fig. 3. The sound
pressure waveform in Fig. 3 shows a distinct pressure pulse
before the resonant radiation or “‘ringing’’ starts. The initial
pressure pulse is due to the forced deformation of the plate
where the pressure waveform duplicates the plate velocity
waveform at the excitation point. There is no sound radiation
until the plate bending waves reflect from the plate edge back
to the plate center. Since bending waves above the critical
frequency radiate toward the direction of propagation, on the
axis of symmetry sound pressure from the plate resonant
vibrations is realized only after the bending waves reflect
from the edge of the plate [21].

The pressure impulse response function is shown in Fig. 4
for the tenth mode at various distances from the center of the

plate on its axis of symmetry. It is seen that as the receiver

point moves away from the plate surface, the pressure
waveform is compressed in time. This time compression is
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Fig. 2 The modal acceleration response, pressure impulse respone,
and corresponding sound pressure radiation for various modes of the

plate.z = 0.10m, ¢ = 0.025.
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Fig. 3 The plate acceleration, pressure impulse response, and sound

pressure obtained using the first 50 modes of the plate.z = 0.10m, { =
0.025.
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pronounced at the start of the waveform. This, of course, is
due to the decrease in the difference between the time of
arrival of sound waves from various points on the plate
surface. Mathematically, it can be seen in the pressure impulse
response equations (25) and (26), where the form of the
argument, (¢ 12 —z2)!2, leads to the time compression of the
waveform. Another implication of this time compression is
the inherent change of the frequency content of the pressure
impulse response with distance. The sound pressure spectrum
is shifted into higher frequencies as the distance from the plate
is in¢reased. The transition in the spectrum continues until z
= R, in equation (26a). When the approximation z = R,
is true, the receiver point is said to be in the acoustic far field
of the plate. In the far field the spectral content is stable.
However, when the receiver point is near the plate, where z =
R i 1s no longer true, lower frequency sound field is apparent
in the pressure impulse response waveforms as shown in Fig.
4,

It should be noted that the changes in the pressure impulse
waveform and its spectrum with distance are strictly due to
the mode shapes and the geometry of the problem. The
physical reasoning behind these changes is the interference of
the pressure waves from different parts of the plate leading to
cancellation at each mode. The results of the convolutions are
modified accordingly. Although not shown here, similar time
compression effects are also seen in the total sound pressure
waveforms.

Summary and Conclusions

A sound pressure impulse response function is developed
from the Rayleigh integral for radiation from a clamped plate
in an infinite baffle. The time-dependent sound radiation
from transient excitation of the plate is then found by a
convolution of the plate acceleration waveform with the
pressure impulse response. The results of this method are the
same as those obtained by direct integration of the Rayleigh
integral and experimental results reported earlier [21]. The
time-dependent boundary conditions that are necessary for
transient radiation when using the Rayleigh integral are in the
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Fig. 4 The tenth modal pressure impulse response at various
distances from the plate surface. ¢ = 0.025.

form of time-dependent integrand and upper integration limit
of the convolution integral in the present method.

An- examination of the pressure impulse response in
equations (25) and (26) reveals its close relationship to the
vibration mode shapes and hence to the geometry and the
boundary conditions of the plate. Hence, the pressure impulse
response function developed here is a spatial phenomenon
affecting the temporal domain. The resulting sound pressure
radiation is also directly related to the acceleration response
of the plate vibrations. The decay in the time history of the
plate vibrations and the resulting radiation is a result of the
damping of the plate material. In addition to the rate of
decay, the damping of the plate material determines the
pressure amplitude, particularly if the plate is excited at one
of its resonances.

In the present problem formulation the plate vibration is
uncoupled from the acoustic radiation, neglecting the fluid-

loading effects on the plate. In general, the influence of fluid

loading on plate vibrations is to shift the resonant frequencies
and alter the mode shapes. The magnitude of the change

46/Vol. 51, MARCH 1984

depends on the frequency and on the nondimensional
parameter 8 = py a/ph, where a,h are the plate radius and
thickness and p,, p are the density of the fluid and the plate
material respectively. For values of 8<1, the effect of fluid
loading on the plate due to acoustic radiation is negligible,
which is the case for radiation into air from metal plates [25].

The time history of the excitation force applied in the
present problem is a smooth pulse without any discontinuities
in its slope leading to a smooth acceleration response of the
plate. A simple analysis of equation (16) shows that as the
duration of the pulse, 7/wy, is increased, the amplitude of the
plate acceleration and therefore the radiation pressure am-
plitude decreases while shifting the spectrum into low
frequencies. For the limiting case of an infinitely long pulse
duration (wy—0), acoustic pressure amplitude vanishes. On
the other hand, as the duration of the excitation force
decreases, the radiation spectrum shifts into higher
frequencies by virtue of the resonance.

The acoustic radiation from the plate shows characteristics
similar to that from a rigid piston; however, in the case of a
transiently excited large plate, radiation from the center of the
plate reaches the receiver before the waves from the edge
arrive. In addition, the amplitude of the vibrations near the
restrained edge is usually small compared to the center of the
plate where excitation takes place. Therefore, during the
initial part of the transient radiation from a point-excited
plate, the pressure on the axis of symmetry is dominated by
the sound waves induced by the forced vibration of the plate,
duplicating the plate velocity response. It is then followed by
the resonant radiation from the plate.

The method developed here is applicable to axisymmetric
vibrations of circular plates, membranes, and annular rings
with various boundary conditions.
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