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A Theoretical Analysis of Transient 
Sound Radiation From a Clamped 
Circular Plate 
A theoretical analysis of transient sound radiation from a clamped circular plate is 
given using a pressure impulse response method. The vibration response of the plate 
to a transient point force is obtained. The modal pressure impulse response func
tions for the plate are derived from the Rayleigh surface integral and numerically 
convoluted with the modal acceleration response of the plate. The impulse response 
functions are closely related to the mode shapes and the geometry of the problem. 
They relate the spatial domain to the temporal domain of the pressure waves. The 
pressure impulse response waveforms are given for a number of plate modes and the 
changes in the waveforms with distance from the plate are shown. Sound radiation 
due to forced and free vibrations of the plate are discussed. 

Introduction 

Acoustic radiation from planar elastic structures is a 
fundamental problem in acoustics. Transient radiation from 
vibrating surfaces represents an important subset of this 
problem in the analysis of a large number of diverse acoustics 
problems. Earlier work on this subject includes radiation 
from transient point-excitations of infinite plates [1-3], 
transient sound transmission through finite plates [4-8], and a 
large class of problems on transient radiation from a baffled 
planar piston. An extensive review of the latter subject is 
given in reference [9]. 

The specific problem of transient sound radiation from a 
finite plate excited by an impact has been the subject of a 
number of studies. However, most of these studies have been 
experimental in nature and have resulted in empirical 
relationships between various parameters [10]. A significant 
analytical study was reported by Strasberg [11] on radiation 
from a periodically struck diaphragm, where radiated 
acoustic power was obtained in the frequency domain. 

Sound radiation from a vibrating plate in an infinite baffle 
can be obtained by solving the pressure wave equation with 
appropriate boundary and initial conditions. A number of 
mathematical techniques have been developed for the problem 
of sound radiation from a baffled piston. These can be 
grouped under four fundamental methods: (1) Rayleigh 
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surface integral [12], (2) King integral [13], (3) Schoch 
solution [14], and (4) convolution integral [15, 16]. Among 
these methods only the King integral is limited to circular-
shaped pistons. The other three methods are applicable to 
baffled planar pistons with arbitrary shapes. 

The Rayleigh surface integral, which is a special case of the 
Helmholtz-Huygens Integral, was the first of these methods 
developed to treat the problem of radiation from baffled 
planar pistons. The other three methods are solutions of the 
wave equation; however, they can also be directly derived 
from the Rayleigh surface integral by appropriate change of 
coordinates. A detailed discussion of these methods and their 
interrelationships can be found in reference [9]. 

The problem of transient radiation from baffled planar 
radiators with nonuniform vibration amplitude was treated in 
a number of recent studies [17-20], Greenspan [17] considered 
radiation from rigid, simply supported, clamped and 
Gaussian radiators, treating both steady-state and transient 
cases. Harris [18] developed a method for transient radiation 
from baffled planar pistons with arbitrary vibration am
plitude. His method is an extension of the convolution 
method where a generalized spatial impulse response function 
is convolved with the piston vibration-time history. Harris's 
results compared the effects of point and finite size receivers. 
The problems of radiation from planar radiators with 
axisymmetric vibration distribution was treated by 
Stepanishen [19]. He developed a generalized Green's func
tion which leads to representation of the acoustic field with a 
single integral. His results were further generalized for the 
case of radiators with arbitrary shape and nonuniform 
vibration distributions by Tj0tta and Tj^tta [20]. 

The present paper describes a theoretical analysis of 
transient acoustic radiation from an impact-excited clamped 
circular plate in an infinite baffle. The expression for the 
sound pressure is obtained using the spatial impulse response-
convolution approach, where the pressure impulse response is 
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P( r ,z ,0 ) 

Fig. 1 Geometry of the problem 

obtained as a line integral and convolved with the ac
celeration-time history of the plate to obtain the transient 
radiation. Several numerical results are given to illustrate the 
distinct differences in the sound pressure waveforms due to 
forced and free vibrations of a clamped plate in an infinite 
baffle excited by an impact force. The results are found to be 
the same as those obtained by direct numerical integration of 
the Rayleigh surface integral reported by the authors earlier 
[21]. 

Plate Vibrations 

Radiation from a thin circular plate of radius a clamped at 
the outer edge and mounted in an infinite baffle is considered. 
An inviscid isotropic homogeneous fluid with a speed of 
sound c and a density p0 much less than the density of the 
plate p is in contact with the plate. Geometry of the problem is 
shown in Fig. 1. The plate is assumed to be excited from rest 
with a transient point force. For mathematical convenience 
the Euler plate theory is used to determine the vibratory 
response of a thin plate. However, as pointed out in reference 
[3], for frequencies above which the wavelength in the plate is 
less than eight times its thickness, the Timoshenko-Mindlin 
plate theory should be used to prevent the slight error in
troduced into the group and phase velocities. 

Using classical plate theory, the equation of motion for the 
transverse displacement, u, of a plate is given as: 

Dv*u + Cdu/dt + phd1u/dtz=F{rs,0SJt) (1) 
where h is the thickness of the plate and D = Ehz/12(l - p2)is 
its flexural rigidity. E is Young's modulus, C is the damping 
coefficient, and v is Poisson's ratio. F(rs,ds,i) is the applied 
transverse force per unit surface area of the plate. 

The general solution to equation (1) for a plate initially 
undeformed and at rest can be written as: 

u{rs,ds.t) = {\/Ph)Yd £ lKr,(rs,esy<J 

i: F„m{T)e -?<>>« 
( I -T) 

sin co,*,„ (t - T)dr (2) 

where co*,„ = io„,„ W- £2. £ is the damping ratio and w„m are 
the natural frequencies of the plate, with the subscripts n and 
m denoting the radial and circular modes, respectively. </>„,„ 
are the normal modes of the plate and are normalized using 
their orthogonality property as: 

Jo' Jo *«»<<r'-e'Wi><i(r''e>y>dr'de> = *a2s%, (3) 

where 

1 n =p, m = q 

The modal coefficients of the force Fnm (t) are found as 
" I On; 
nodal co< 

Fnm(t)= [\J \a
0F(rs,6s,t)<i>nm(rs,es)rsdrsd6s] 

l[\ J \'04L(.rJ,e,yadrsdo,] 

A transient point force may be expressed as 

F(rs,ds,t) = F0d(rs-r0)5(es-80)f«)/2vr! 

where fit) is the arbitrary time dependence of the force and b 
is the Dirac delta function. When the transient force is applied 
at the center of the plate, the force function takes the form 

(5) 

N o m e n c l a t u r e 

a = radius of plate 
c = wave speed in acoustic medium 
h = thickness of plate 

r,z,6 = cylindrical coordinates 
rs>&s = polar coordinates on the plate surface 

u = transverse displacement of plate 
C = damping coefficient 
D = flexural rigidity of plate =EA3/12(1 — 
E = Young's modulus 
F = applied load 

M = mass of plate 

v2) 

S(r) = Dirac delta function 
X„ = freqency parameter 
I = damping ratio 
v = Poisson's ratio for plate 
P = density of plate material 

PQ = density of acoustic medium 
4>„ = eigenfunctions of plate nth mode 
co„ = natural frequency of a clamped circular plate 
co0 = ir/duration of transient force 
C O * = CO„VTT2 
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F{rs,t) = FQb(rs)f(.t)/2-Krs (6) 

and the axisymmetric response of the plate is written as 

P" n=0 

where 

p(r,z,t) = (p0/2ir)f u[rs(l^),t-R/c]dS/R (14) 

JoF„(r)sinco:(/-T)rf7 (7) 

F « W = j o ' \[P(rs,f)^rs)rsdrsdesj\^ \"Q<lfars)rsdrsd6s (8) 

The mode shapes </>„ and the natural frequencies to,, are 
determined by applying the boundary conditions to the 
homogeneous undamped equation of motion of the plate. For 
a circular plate with a clamped edge, the axisymmetric mode 
shapes and the natural frequencies are given by [22]: 

4>„(rs) = 
1 M\,rs/a) I0(\,rs/a) 

V2 L 70(X„) h(K) J 
(9) 

(10) u„=(\„/a)2^D7ph 

where \ , are the roots of the frequency equation (11): 

•/o(XJ/,(Xfl) + /,(Xfl)/0(Xn) = 0. (11) 

J0 and J, are Bessel functions of the first kind and I0 and / , 
are modified Bessel functions of the first kind. 

The transient force-time history is represented with a 
squared half-sine pulse in equation (6) to simulate elastic 
impact of a plate with a sphere [21]: 

F{r„t) = 
F08(r's)sm2oi0t/2irrs, 0<?<7r/a>0 

0 ir/co0 < t 
(12) 

The axisymmetric displacement response in equation (7) to the 
forcing function in (12) becomes: 

»(^>=SL; *M4>n(rs) 
M t^~0 (4a)2,-to2„)sinQ-4£a)„cooCOsQ 

'/2sin(2«0f + Q) + Xi exp(- E«,,0sin(w* f, +(],) + £, 

0 1 1 1 TT/COO 

^2exp(-^co„/,)sin(co;,r1+n2), f , ^ 0 (13) 

where 

Q = tan~'[(co2-4co2)/4?co0w„], 

Q, = tan-'luJ^+'/zsiniJyiwoCOsfi+Jw^Cf+'/zsinn)]} 

Q2 = tan- ' IC.wJACj+C^o, , , ) ] , 

^ = [co0cost2/(^o)„sinQ1-co*cosfl!)] 

-^2 = [C2/(u*cos02-£cd„sinQ2)], 

C, = 1/2sinfi + A'|exp(-?a)„7r/lu)o)sin[(co*7^/uo) + n l ] + £ , 

C2 = aj0cosQ + Xiexp(-£u„7r/o0Mw*cos[(«*7r/ 

"o) + ^i)]-?co„sin[(co*ir/u0) + fii]] 

E = [(4co§-co2)sinn-4^0concosf2]/2a)2, 

M = PTra2h,tl=t-Tr/w0,w* = w„^I^i2 

Acoustic Radiation 

The sound pressure radiated from a vibrating plate in a 
rigid infinite baffle (z = 0 plane) can be obtained by evaluating 
the Rayleigh surface integral [12]. For an axisymmetric 
radiator the Rayleigh integral is written as: 

where u(rs,t) is the acceleration-time history of plate 
vibrations and R is the distance from the receiver to any point 
on the plate surface. The elemental surface area is dS = Idld4> 
with the coordinates /, \p shown in Fig. 1. Subscript 5 delineates 
the coordinates on the plate surface. 

In the Rayleigh integral the delay in the arrival of the 
acoustic pressure waves emanating from points on the plate at 
different distances from the receiver point is taken into ac
count by the delay-time (t-R/c) in the acceleration term. The 
integration is carried out over the plate surface. 

The spatial impulse response or the convolution approach 
can be developed directly from the Rayleigh integral in 
equation (14) by first transforming the integration variables 
from the surface coordinates (rs,8s) to receiver-oriented 
coordinates (R,\p) and then performing one of the integrals. 
Referring to Fig. 1 and considering the relationship between 
the coordinates, R2 = z2 + I2 and RdR = Idl, equation (14) 
can be written as 

p(r,z,t)= -^- u[rs{R,z,M,t-R/c]dRd^ (15) 
2 T J^minJO 

where Rmin and ,Rmax are the closest and farthest distances 
from the receiver to the plate surface. 2^max is the largest 
angle $ makes as shown in Fig. 1. 

From equation (13) the axisymmetric acceleration response 
of an impact-excited clamped circular plate can be written as 

u(rs,t)= £*„(/•,)&,(/) (16) 

where 

*•«-(£) 
*„(0) 

X 

(4cog -u)2)sinfi-4£a>„co0cosfi 

-2oijsm(2w0t + Q)+X1exp(-^unt)[^2u2, -co*2) 

sin(a>J?i +fi1)-2^u„u^cos(co*/ + n1)], 

0 Ik t% TT/OJO 

X 2exp(-£co„r , ) i«V, -co;2)sin(«;f, +0 2 ) 

-2^w„u*cos{.w*„ti+Q1)], ti^O 

4>„(r) is given in equation (9). 
Substitution of equation (16) in (15) gives: 

P o r «max r ̂  
P(.r,z,t)= — 

IT, J/?mifl Jo 

^ m a x C ^ > 

[ E *« 1>S(R.Z' WlQ«0 - R / c ^ dRd^ (17) 

After changing the order of summation and integrations, and 
substituting T=R/C, equation (17) can be written as: 

' *max<".2> 

^ ~ T ) l X Jo 
„ = 1 J rmin ^ 7T J 0 

MrAR.z.WR-crdifydT (18) 

Equation (18) shows the sound pressure at the receiver point 
to be a result of radiation at each mode, which can be written 
as: 
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P(r,z,t)= £ \qn(.t)*Pm(r,z,t)] 
Substituting equations (24) in equation (20) and performing 

the integration results in the following modal pressure impulse 
response expressions: 

<,< (19) 

where the modal impulse response function at the nth mode, 
pin, is given as: 

• * m a x <* = <•«> 

/. When r > a: 

Pin(r,Z,t) = 
PpC 

irJ2 [t emJm(Kr/a)Jm[\n(c
2t2-z2),/2/a} 

pnC f *i..-.-

7T JO » 

Equations (18) and (19) can be interpreted as convolution of A/0(A„)- ^ e,„(- \)mIm(\,r/a)Im[\„(c2t2 ~z2)U2/a]/Ia(\ )] 
plate acceleration-time history with the impulse response ,„=o " J 

sin mip 
plate acceleration-time history 
function, p,„(0> at each mode. These results can be obtained 
using either the convolution integral method [9] or the im
pulse response approach developed using a Green's function 
solution [19]. 

*min ^Ct^R„ (25) 

/ / . When r % a: 

P,n(r,z,t) = 

PpC 

V2 
([M\nr/a)J0[\,(c2t2 -z2)m/a}/Ja{\„)] 

- [/0(X„r/a)/0[\„(c2/2 -z 2) 1 / 2 /a] / / 0(A„)]} , z%ct^R„ 

same as equation (25), Rmin %ct% Rmm 

(26a) 

It should be noted that the modal impulse response func
tion, Pj„(t), relates the radiated acoustic pressure to the 
receiver-source geometry and to the mode shapes of the 
radiator. Further discussion on modal impulse response will 
be given later in this paper. 

Evaluation of the Modal Impulse Response 

The modal impulse response function, given in equation 
(20), is evaluated by first expressing the mode shape functions 
<t>„(rs) in terms of the receiver coordinates as 4>„(,R,tl/). Using 
the law of cosines and referring to Fig. 1: 

r2 =r2 +R2 -z2 -2r(R2 -z2)m cos^ (21) 

The values of the angle \p are defined as: 

/. When/->a: 

\P(R,z) = cos'1[(R2-z2+r2-a2)/2r(R2 -z2)1/2], 

^ m i n = ct — ^ n (22) 

/ / . When r*k a: 

"%, z<ct1LR 
m,z)= 

min 

2 . . 2 cos-l[(R2-z2+r2-a2)/2r(R2-z2y/2L 
R • < c / < fl 
Jvmin — t l — " m a x 

(23) 

where«min = [z2 + ( T - - O ) 2 ] , / Z andi?max = [z2 +(r + a)2Vn. 
The integration of the Bessel functions with respect to \p can 

be simplified by using Neumann's addition theorem [23,24]: 

J0(\„rs/a) = J0(\„r/a)J0[\n(R
2-z2)U2/a] 

CO 

+ 2 £ Jm(Kr/a)Jm [X„(R2 - z2)l/2/a]cos m^ (24a) 
m = l 

A similar relationship can be obtained for the modified Bessel 
functions as: 

I0(Krs/a) = I0(Kr/a)I0[\n(R
2-z2y/2/a} 

oo 

+ 2 E (-!)"• Im(\„r/a)Iml\n(R
2 -z2)wl/a]cos m^ (246) 

where e0 = 1 and em = 2 for m \ 1. 

The first part of equation (26a) is similar to the result for a 
membrane given in [19]. Since the clamped plate cannot have 
rigid body motion, the result for a rigid piston, obtained by 
substituting X„ = 0 in equation (26a), indicates zero sound 
pressure. 

The acoustic radiation from a clamped plate excited by a 
transient force such as that given in equation (12) can be 
found by substituting equations (25) and (26) in the con
volution integral given in equation (19). 

Results 

The transient sound pressure radiated from a clamped plate 
is obtained by evaluating the convolution for each mode and 
summing the results numerically. For the numerical examples, 
the case of radiation from a 0.50 m diameter steel plate of 
1.59 mm thickness was used. The magnitude of the excitation 
force in 134 N with the force-time history given in equation 
(12). 

The plate acceleration response at its midpoint, the pressure 
impulse response at z = 0.10 m on the axis of symmetry, and 
the resulting modal sound pressure at the same location are 
shown in Fig. 2 for a number of modes. The total plate ac
celeration response and sound pressure waveforms are ob
tained by summing the modal acceleration and sound pressure 
waveforms for 50 modes, as shown in Fig. 3. The sound 
pressure waveform in Fig. 3 shows a distinct pressure pulse 
before the resonant radiation or "ringing" starts. The initial 
pressure pulse is due to the forced deformation of the plate 
where the pressure waveform duplicates the plate velocity 
waveform at the excitation point. There is no sound radiation 
until the plate bending waves reflect from the plate edge back 
to the plate center. Since bending waves above the critical 
frequency radiate toward the direction of propagation, on the 
axis of symmetry sound pressure from the plate resonant 
vibrations is realized only after the bending waves reflect 
from the edge of the plate [21]. 

The pressure impulse response function is shown in Fig. 4 
for the tenth mode at various distances from the center of the 
plate on its axis of symmetry. It is seen that as the receiver 
point moves away from the plate surface, the pressure 
waveform is compressed in time. This time compression is 
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ACCELERATION (mi't PRESSURE IMPULSE RESPONSE (Pa/nVo) SOUND PRESSURE (Pa) 

Fig. 2 The modal acceleration response, pressure impulse respone, 
and corresponding sound pressure radiation for various modes of the 
plate, z =s 0.10 m, £ = 0.025. 
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Fig. 3 The plate acceleration, pressure impulse response, and sound 
pressure obtained using the first 50 modes of the plate, z = 0.10 m, £ = 
0.025. 

pronounced at the start of the waveform. This, of course, is 
due to the decrease in the difference between the time of 
arrival of sound waves from various points on the plate 
surface. Mathematically, it can be seen in the pressure impulse 
response equations (25) and (26), where the form of the 
argument, (c2 t2 - z2)W2, leads to the time compression of the 
waveform. Another implication of this time compression is 
the inherent change of the frequency content of the pressure 
impulse response with distance. The sound pressure spectrum 
is shifted into higher frequencies as the distance from the plate 
is increased. The transition in the spectrum continues until z 
= Rmin in equation (26a). When the approximation z = Rmi„ 
is true, the receiver point is said to be in the acoustic far field 
of the plate. In the far field the spectral content is stable. 
However, when the receiver point is near the plate, where z = 
Rmi„ is no longer true, lower frequency sound field is apparent 
in the pressure impulse response waveforms as shown in Fig. 
4. 

It should be noted that the changes in the pressure impulse 
waveform and its spectrum with distance are strictly due to 
the mode shapes and the geometry of the problem. The 
physical reasoning behind these changes is the interference of 
the pressure waves from different parts of the plate leading to 
cancellation at each mode. The results of the convolutions are 
modified accordingly. Although not shown here, similar time 
compression effects are also seen in the total sound pressure 
waveforms. 

Summary and Conclusions 

A sound pressure impulse response function is developed 
from the Rayleigh integral for radiation from a clamped plate 
in an infinite baffle. The time-dependent sound radiation 
from transient excitation of the plate is then found by a 
convolution of the plate acceleration waveform with the 
pressure impulse response. The results of this method are the 
same as those obtained by direct integration of the Rayleigh 
integral and experimental results reported earlier [21]. The 
time-dependent boundary conditions that are necessary for 
transient radiation when using the Rayleigh integral are in the 
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Fig. 4 The tenth modal pressure impulse response at various 
distances from the plate surface. | = 0.025. 

form of time-dependent integrand and upper integration limit 
of the convolution integral in the present method. 

An examination of the pressure impulse response in 
equations (25) and (26) reveals its close relationship to the 
vibration mode shapes and hence to the geometry and the 
boundary conditions of the plate. Hence, the pressure impulse 
response function developed here is a spatial phenomenon 
affecting the temporal domain. The resulting sound pressure 
radiation is also directly related to the acceleration response 
of the plate vibrations. The decay in the time history of the 
plate vibrations and the resulting radiation is a result of the 
damping of the plate material. In addition to the rate of 
decay, the damping of the plate material determines the 
pressure amplitude, particularly if the plate is excited at one 
of its resonances. 

In the present problem formulation the plate vibration is 
uncoupled from the acoustic radiation, neglecting the fluid-
loading effects on the plate. In general, the influence of fluid 
loading on plate vibrations is to shift the resonant frequencies 
and alter the mode shapes. The magnitude of the change 

depends on the frequency and on the nondimensional 
parameter (3 = p0 a/ph, where a,h are the plate radius and 
thickness and p0, p are the density of the fluid and the plate 
material respectively. For values of (3<1, the effect of fluid 
loading on the plate due to acoustic radiation is negligible, 
which is the case for radiation into air from metal plates [25]. 

The time history of the excitation force applied in the 
present problem is a smooth pulse without any discontinuities 
in its slope leading to a smooth acceleration response of the 
plate. A simple analysis of equation (16) shows that as the 
duration of the pulse, 7r/cj0> is increased, the amplitude of the 
plate acceleration and therefore the radiation pressure am
plitude decreases while shifting the spectrum into low 
frequencies. For the limiting case of an infinitely long pulse 
duration (co0-»0), acoustic pressure amplitude vanishes. On 
the other hand, as the duration of the excitation force 
decreases, the radiation spectrum shifts into higher 
frequencies by virtue of the resonance. 

The acoustic radiation from the plate shows characteristics 
similar to that from a rigid piston; however, in the case of a 
transiently excited large plate, radiation from the center of the 
plate reaches the receiver before the waves from the edge 
arrive. In addition, the amplitude of the vibrations near the 
restrained edge is usually small compared to the center of the 
plate where excitation takes place. Therefore, during the 
initial part of the transient radiation from a point-excited 
plate, the pressure on the axis of symmetry is dominated by 
the sound waves induced by the forced vibration of the plate, 
duplicating the plate velocity response. It is then followed by 
the resonant radiation from the plate. 

The method developed here is applicable to axisymmetric 
vibrations of circular plates, membranes, and annular rings 
with various boundary conditions. 
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